Analysis of Electronic Structure of Boron Nitride Nanotubes with Different Positions of Intrinsic Impurities
نویسندگان
چکیده
The pristine boron nitride nanotubes have a large direct band gap around 5 eV. This band gap can be engineered by doping. We investigate electronic structure of the doped hexagonal boron nitride (5,5) nanotubes using the linearized augmented cylindrical wave method. In particular, this work focuses on systematical study of the band gap and the density of states around the Fermi-level when the nanotubes are doped by intrinsic impurities of two substitutional boron atoms in a super cell and a comparative analysis of the relative stability of three structures studied here. This corresponds to 3.3% of impurity concentration. We calculate 29 configurations of the nanotubes with different positions of the intrinsic impurities in the nanotube. The band gap and density of states around the Fermi level show strong dependence on the relative positions of the impurity atoms. The two defect sub bands called D(B) appear in the band gap of the pristine nanotube. The doped nanotubes possess p-type semiconductor properties with the band gap of 1.3-1.9 eV.
منابع مشابه
Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes
In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...
متن کاملQuantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes
In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...
متن کاملTheoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes
In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...
متن کاملThe Effect of Aluminum, Gallium, Indium- Doping on the Zigzag (5, 0) Boron-Nitride Nanotubes: DFT, NMR, Vibrational, Thermodynamic Parameters and Electrostatic Potential Map with Electrophilicity Studies
Influence of Aluminum, Gallium, Indium- Doping on the Boron-Nitride Nanotubes (BNNTs) investigated with density functional theory (DFT) and Hartreefock (HF) methods. For this purpose, the chemical shift of difference atomic nucleus was studied using the gauge included atomic orbital (GIAO) approch. In the following, structural parameter values, electrostatic potential, thermodynamic parameters,...
متن کاملTheoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes
In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...
متن کامل